AIModelShare

Supporting Functions

configure_credentials()

aimodelshare.aws.configure_credentials()

Return a formatted credentials file built with user inputs.

Combine your AI Model Share & AWS credentials into a single ‘credentials.txt’ file with the configure_credentials function. You only have to make the file once, then you can use it whenever you use the aimodelshare library.

Credentials files must follow this format:

_images/creds_file_example.png

The following code will prompt you to provide your credentials one at a time and pre-format a txt file for you to use in the future:

Example

#install aimodelshare library
! pip install aimodelshare

# Generate credentials file
import aimodelshare as ai
from aimodelshare.aws import configure_credentials
configure_credentials()

set_credentials()

Set credentials for all AI Model Share functions with the aimodelshare.aws.set_credentials() function:

aimodelshare.aws.set_credentials(credential_file="credentials.txt", type="submit_model", apiurl)

Set credentials for AI Model Share and Amazon Web Services (AWS).

Parameters:
  • credential_file (string) – Path to formatted credentials txt file.

  • type (string) – set to “deploy_model” to deploy a ModelPlayground.

  • apiurl (string) – unique api_url that powers a specific Model Playground.

Returns:

Success Message.

Example

# Deploying ModelPlaygrounds - Requires AWS credentials
from aimodelshare.aws import set_credentials
set_credentials(credential_file="credentials.txt", type="deploy_model")

# Submitting Models to Competition - No AWS credentials required
from aimodelshare.aws import set_credentials
apiurl="https://example.execute-api.us-east-1.amazonaws.com/prod/m"
set_credentials(apiurl=apiurl)

download_data()

Download data sets that have been shared to AI ModelShare with the aimodelshare.data_sharing.download_data() function:

aimodelshare.data_sharing.download_data(repository)

Download data that has been shared to the AI ModelShare website.

Parameters:

repository (string) – URI & image_tag of uploaded data (provided with the create_competition method of the Model Playground class)

Returns:

Success Message & downloaded data directory

Example

from aimodelshare import download_data
download_data('example-repository:image_tag')

export_eval_metric()

aimodelshare.custom_eval_metrics.export_eval_metric(eval_metric_fxn, directory, name)

Export evaluation metric and related objects into zip file for model deployment

Parameters:
  • eval_metric_fxn (string) – name of eval metric function (should always be named “eval_metric” to work properly)

  • directory (string) – folderpath to eval metric function use “” to reference current working directory

  • name (string) – name of the custom eval metric

Returns:

file named ‘name.zip’ in the correct format for model deployment

Example

from aimodelshare import export_eval_metric
export_eval_metric(eval_metric_fxn, directory, name)

export_reproducibility_env()

aimodelshare.reproducibility.export_reproducibility_env(seed, directory, mode)

Export development environment to enable reproducibility of your model.

Parameters:
  • seed (Int) – Random Seed

  • mode (string) – Processor - either “gpu” or “cpu”

Directory:

Directory for completed json file

Returns:

“./reproducibility.json” file to use with submit_model()

Example

from aimodelshare import export_reproducibility_env
export_eval_metric(seed, directory, mode)

share_dataset()

Upload data sets to AI ModelShare with the aimodelshare.data_sharing.share_dataset() function:

aimodelshare.data_sharing.share_dataset(data_directory='folder_file_path', classification='default', private='FALSE')

Upload data to the AI ModelShare website.

Parameters:

data_directory (string) – path to the file directory to upload.

Returns:

Success Message

Example

from aimodelshare.data_sharing.share_data import share_dataset
share_dataset(data_directory = "example_path", classification="default", private="FALSE")